焦点期刊
在线客服

著作编辑 著作编辑

投稿邮箱: 941198995@qq.com

浅析桥梁施工出现裂缝的因素及应对措施

时间:2014-09-25 22:10:23 阅读量:0次 所属分类:科技论文

摘要:为了进一步加强对混凝土桥梁裂缝的认识,尽量避免工程中出现危害较大的裂缝,本人在本文针对混凝土桥梁裂缝的种类和产生的原因较浅的作了分析、总结,以方便设计、施工找出控制裂缝的可行办法,达到防范于未然的作用。

  摘要:为了进一步加强对混凝土桥梁裂缝的认识,尽量避免工程中出现危害较大的裂缝,本人在本文针对混凝土桥梁裂缝的种类和产生的原因较浅的作了分析、总结,以方便设计、施工找出控制裂缝的可行办法,达到防范于未然的作用。

  关键词:桥梁施工;裂缝;应对措施

  1荷载引起的裂缝

  1.1设计计算阶段,结构计算时不计算或部分漏算;计算模型不合理;结构受力假设与实际受力不符;荷载少算或漏算;内力与配筋计算错误;结构安全系数不够。结构设计时不考虑施工的可能性;设计断面不足;钢筋设置偏少或布置错误;结构刚度不足;构造处理不当;设计图纸交代不清等。

  1.2施工阶段,不加限制地堆放施工机具、材料;不了解预制结构受力特点,梁板随意翻身、起吊、运输、安装;不按设计图纸施工,擅自更改结构施工顺序,改变结构受力模式;不对结构做机器振动下的疲劳强度验算等。

  1.3在设计外荷载作用下,由于结构物的实际工作状态同常规计算有出入或计算不考虑,从而在某些部位引起次应力导致结构开裂。例如两铰拱桥拱脚设计时常采用布置“X”形钢筋同时削减该处断面尺寸的办法设计铰,理论计算该处不会存在弯矩,但实际该铰仍然能够抗弯,以至出现裂缝而导致钢筋锈蚀。

  1.4桥梁结构中经常要凿槽、开洞、设置牛腿等,在常规计算中难以用准确的图式进行模拟计算,一般根据经验设置受力钢筋。研究表明,受力构件挖孔后,力流将产生绕射现象,在孔洞附近密集,产生巨大的应力集中。在长跨预应力连续梁中,经常在跨内根据截面内力需要截断钢束,设置锚头,而在锚固断面附近经常可以看到裂缝。因此,若处理不当,在这些结构的转角处或构件形状突变处、受力钢筋截断处容易出现裂缝。

  1.5实际工程中,次应力裂缝是产生荷载裂缝的最常见原因。次应力裂缝多属张拉、劈裂、剪切性质。次应力裂缝也是由荷载引起,仅是按常规一般不计算,但随着现代计算手段的不断完善,次应力裂缝也是可以做到合理验算的。这类裂缝多出现在受拉区、受剪区或振动严重部位。但必须指出,如果受压区出现起皮或有沿受压力方向的短裂缝,往往是结构达到承载力极限的标志,是结构破坏的前兆。

  2温度变化引起的裂缝

  2.1日照、桥面板、主梁或桥墩侧面受阳光照晒后,温度明显高于其它部位,温度梯度呈非现行分布。由于受到自身约束作用,导致局部拉应力较大,出现裂缝。

  2.2水化热。出现在施工过程中,大体混凝土(厚度超过2.0m)浇筑之后由于水泥水化放热,致使内部温度限高,内外温差太大,致使表面出现裂缝。

  2.3预制T梁之间横隔板安装时,支座预埋钢板与调平钢板焊接时,若焊接措施不当,铁件附近混凝土容易烧伤开裂。

  3收缩引起的裂缝

  3.1性收缩:发生在施工过程中、混凝土浇筑后4-5小时左右,此时水泥水化反应激烈,分子链逐渐形成,出现泌水和水分急剧蒸发,混凝土失水收缩,同时骨料因自重下沉,因此时混凝土尚未硬化,称为塑性收缩。塑性收缩所产生量级很大,可达1%左右。捣要密实,竖向变截面处宜分层浇筑。

  3.2缩水收缩(干缩)。混凝土结硬以后,随着表层水分逐渐蒸发,温度逐步降低,混凝土体积减小,称缩水收缩(干缩)。

  3.3炭化收缩。大气中的二氧化碳与水泥的水化物发生化学反应引起的收缩变形。炭化收缩只有在湿度50%左右才能发生,且随二氧化碳的浓度的增加而加快。炭化收缩一般不做计算。

  4钢筋锈蚀引起的裂缝

  由于混凝土质量较差或保护层厚度不足,混凝土保护层受二氧化碳侵蚀炭化至钢筋表面,使钢筋周围混凝土碱度降低,或由于氯化物介入,钢筋周围氯离子含量较高,均可引起钢筋表面氧化膜破坏,钢筋中铁离子与侵入到混凝土中的氧气和水分发生锈蚀反应,其锈蚀物氢氧化铁体积比原来增长约2~4倍,从而对周围混凝土产生膨胀应力,导致保护层混凝土开裂、剥离,沿钢筋纵向产生裂缝,并有锈迹渗到混凝土表面。由于锈蚀,使得钢筋有效断面面积减小,钢筋与混凝土握裹力削弱,结构承载力下降,并将诱发其它形式的裂缝,加剧钢筋锈蚀,导致结构破坏。

  5冻胀引起的裂缝

  大气气温低于零度时,吸水饱和的混凝土出现冰冻,游离的水转变成冰,体积膨胀9%,因而混凝土产生膨胀应力;同时混凝土凝胶孔中的过冷水(结冰温度在-78度以下)在微观结构中迁移和重分布引起渗透压,使混凝土中膨胀力加大,混凝土强度降低,并导致裂缝出现。尤其是混凝土初凝进受冻最严重,成龄后混凝土强度损失可达30%~50%。冬季施工时对预应力孔道灌浆后若不采取保温措施也可能发生沿管道方向的冻胀裂缝。

  6施工材料质量引起的裂缝

  混凝土主要由水泥、砂、骨料、拌和水及外加剂组成。配置混凝土所采用材料质量不合格,可能导致结构出现裂缝。

  7施工工艺质量引起的裂缝

  在混凝土结构浇筑、构件制作、起模、运输、堆放、拼装及吊装过程中,若施工工艺不合理、施工质量低劣,容易产生纵向的、横向的、斜向的、竖向的、水平的、表面的、深进的和贯穿的各种裂缝,特别是细长薄壁结构。裂缝出现的部位和走向、裂缝宽度因产生的原因而异。

  8防止混凝土产生裂缝的措施

  8.1严格控制粗细骨料的质量,砂中的含泥量不应大于1%,粒径应先择上偏粗的中砂。碎石应控制粉尘含量使其不应大于2%,并应选择级配良好的石子以减少空隙率和孔隙率。采用改善骨料级配,用干硬性混凝土,掺混合料,加引气剂或塑化剂等措施以减少混凝土中的水泥用量;加强对混合料的控制,尤其是水灰比和搅拌时间的控制,以免拌合不均影响混凝土的质量造成混凝土中含水量局部过大而产生收缩裂缝。

  8.2拌和混凝土时加水或用水将碎石冷却以降低混凝土的浇筑温度;热天浇筑混凝土进减少浇筑厚度,利用浇筑层面散热;混凝土中埋设水管,通入冷水降温;规定合理的拆模时间,气温骤降时进行表面保温,以免混凝土表面发生急剧温度梯度;施工中长期暴露的混凝土浇筑块表面或薄壁结构,在寒冷季节采取保温措施。

  8.3优化振捣工艺确保混凝土振捣密实,振捣时间以混凝土表面呈现泛浆,混凝土不再下沉,表面无气泡为止。浇筑厚度应严格控制,对于无模板的顶层混凝土表面应在混凝土终凝之前抹面压实。

  8.4加强水泥质量的控制,使其各项指标均要达到国家标准的要求;改善混凝土的性能,提高抗裂能力,加强养护,防止表面干缩,特别是保证混凝土的质量对防止裂缝是十分重要的,应特别注意避免产生贯穿裂缝,出现后要恢复其结构的整体性是十分困难的,因此施工过程应以预防贯穿性裂缝的发生为主。

  8.5当混凝土温度高于气温时应适当考虑拆模时间,以免引起混凝土表面的早期裂缝。新浇筑混凝土早期拆模,在表面引起很大的拉应力,出现“温度冲击”现象。在混凝土浇筑初期,由于水化热的散发,表面引起相当大的拉应力,此时表面温度比气温高,此时拆除模板,表面温度骤降,必然引起温度梯度,从而在表面附加一拉应力,与水化热应力迭加,再加上混凝土干缩,表面的拉应力达到很大的数值,就有导致裂缝的危险,但如果在拆除模板后及时在表面覆盖一轻型保温材料,如泡沫海棉等,对于防止混凝土表面产生过大的拉应力,具有显著的效果。

  8.6加筋对大体积混凝土的温度应力影响很小,因为大体积混凝土的含筋率极低,只是对一般钢筋混凝土有影响。在温度不太高及应力低于屈服极限的条件下,钢的各项性能是稳定的,而与应力状态、时间及温度无关。钢的线胀系数与混凝土线胀系数相差很小,在温度变化时两者间只发生很小的内应力。由于钢的弹性模量为混凝土弹性模量的7—15倍,当内混凝土应力达到抗拉强度而开裂时,钢筋的应力将不超过100~200MPa。因此,在混凝土中想要利用钢筋来防止细小裂缝的出现很困难。但加筋后结构内的裂缝一般就变得数目多、间距小、宽度与深度较小了,而且如果钢筋的直径细而间距密时,对提高混凝土抗裂性的效果较好。混凝土和钢筋混凝土结构的表面常常会发生细而浅的裂缝,其中大多数属于干缩裂缝。虽然这种裂缝一般都较浅,但它对结构的强度和耐久性仍有一定的影响。

  8.7正确使用外加剂

  ①混凝土中存在大量毛细孔道,水蒸发后毛细管中产生毛细管张力,使混凝土干缩变形。增大毛细孔径可降低毛细管表面张力,但会使混凝土强度降低,这个表面张力理论早在六十年代就已被国际上所确认。

  ②水灰比是影响混凝土收缩的重要因素,使用减水防裂剂可使混凝土用水量减少25%。水泥用量也是混凝土收缩率的重要因素,掺加减水防裂剂的混凝土在保持混凝土强度的条件下可减少15%的水泥用量,其体积用增加骨料用量来补充。减水防裂剂可以改善水泥浆的稠度,减少混凝土泌水,减少沉缩变形。提高水泥浆与骨料的粘结力,提高混凝土抗裂性能。

  ③混凝土在收缩时受到约束产生拉应力,当拉应力大于混凝土抗拉强度时裂缝就会产生。减水防裂剂可有效的提高混凝土抗拉强度和抗裂性能。掺加外加剂可使混凝土密实性好,可有效地提高混凝土的抗碳化性,减少碳化收缩。掺减水防裂剂后混凝土缓凝时间适当,在有效防止水泥迅速水化放热基础上,避免因水泥长期不凝而带来的塑性收缩增加。

  8.8混凝土的早期养护。主要目的在于保持适宜的温湿条件,以达到两个方面的效果,一方面使混凝土免受不利温、湿度变化的侵袭,防止有害的冷缩和干缩;另一方面使水泥水化作用顺利进行,以期达到设计的强度和抗裂能力。适宜的温湿度条件是相互关联的,混凝土的保温措施常常也有保湿的效果。

  9总结

  在桥梁施工过程中,出现裂缝的原因是多种多样的。只有掌握出现裂缝的原因,才能在施工中采取合理的措施,严格控制好材料质量,采取合理的施工工艺,加强现场的施工管理,根据现场条件、材料特点、气温等多种因素,采取合理的措施,就能有效地控制裂缝的产生,确保工程质量。


本文链接:https://www.133lw.com/lunwen/ligong/6039.html